Improving Hydrological Snowpack Forecasting for Hydropower Generation Using Intelligent Information in a warming climate

PI: Prof. Steven D. Glaser
co-PIs: Prof. Roger C. Bales &
Prof. Martha Conklin
Team: <u>Francesco Avanzi</u>, Tessa
Maurer, Sami A. Malek,
Kevin Richards et al.

2018 Electric Program Investment Charge (EPIC) Symposium Sacramento, CA -- February 7 2018

Project objective

Quantify and reduce uncertainty in water resources forecasts owing to a changing climate.

North Fork Feather River Hydroelectric Project

- 3 reservoirs (1,150 TAF)
- 10 powerhouses (734 MW)
- Upstream of Lake Oroville

Real-time wireless sensor networks

Wireless sensor networks track representative patterns of water content based on physiographic variables.

Summary and future directions

We are developing <u>core elements</u> of a **next generation hydrographic data network.**

The network can support hydropower decision makers in real time with more information about the snowpack state.

Data are being used to **improve** current decision-support tools for hydropower like the **PRMS model**.

Data from wireless sensor networks provide forecasters with more data for calibration, validation, and assimilation.

Better measuring hydrologic inputs: e.g., rain-snow transition zone.

Identifying uncertainty in processes and parameters, from precipitation down to snow and soil moisture.

Providing data for multiobjective calibration and validation.

USGS PRMS model

Wireless sensor networks allow forecasters to fill gaps in data using machine learning and spatial consinstency.

Results by Adam Coogan, UC Santa Cruz

Uncertainty in water-resources forecasting is a **global issue**: today California, tomorrow the world.

